The *Orff-Schulwerk* approach and optimal experiences: A case study in a music education context

João C. R. Cunha and Sara Carvalho

INET-MD, University of Aveiro, Portugal

This study's main objective was to share results and *Flow Theory*-based analysis of an on-going longitudinal study on music pedagogy and development in a Portuguese music education context. *Optimal experiences/flow states* were experienced by fifth and sixth grade students during music education classes based on the *Orff-Schulwerk* approach. In order to assess musical engagement, questionnaires (based on *AFIMA - Adapted Flow Indicators in Musical Activity*) were given to students. The results obtained were related to the indicator “challenges and skills,” which is an AFIMA dimension and a fundamental parameter of flow state occurrence. The objective of this longitudinal study was to show that musical activities based on the *Orff-Schulwerk* approach provide a flow-sustaining strategy during music education classes. This research also intends to contribute to an area where information is still scarce on the connection between learning through the *Orff-Schulwerk* approach and the flow-related behaviors of optimal experience. This holistic music learning experience may prove to be important not only in relation to how students acquire music knowledge, but also in how to develop their personalities in a holistic way.

Keywords: Orff-Schulwerk approach; optimal experience; flow theory; music education; Portugal

At the end of the last century, Sloboda (1999) brought attention to the poor quality of music education in many schools, in which he claimed that the message given was that “if you haven’t got talent, you should stop wasting your time messing around with music, and concentrate on your maths or business studies” (p. 455). Today, UNESCO (2012) reports benefits to introducing art education into learning environments. This allows for balanced
intellectual, emotional, and psychological development of individuals and societies. Such educational tools not only strengthen cognitive development, but also aid in the acquisition of life skills. In most cultures the arts are integral to life, as function, creation, and learning are intertwined (UNESCO 2012). Therefore, music education experiences, such as singing, playing, and movement, bring benefit to children’s holistic development as human beings. Regrettably, under the current Portuguese education system, as defined by the music education curriculum (Ministério da Educação 1986, 2005), students enrolled in the fifth and sixth grades only experience formal compulsory musical education once per week, and most of them only start to learn music at the age of 10 and continue for a two-year period. Based on collective experience, the authors strongly believe that the Orff-Schulwerk approach of “live, learn, and enjoy” can allow these students to fully experience music in this short period of formal learning.

Orff-Schulwerk is a particularly flexible and effective approach to music education due to the wealth and balance of different learning forms involved. Developed by Carl Orff and Gunild Keetman, Orff-Schulwerk is supported by a wide range of integrated forms such as speech, music, movement, and dance, and is an “all learning process” that can be developed into a complex range of forms, motives, and structures. Carl Orff’s principal approach to music education was to always awaken human potential for “being musical” (meaning to be able to understand and use music and movement as forms of expression), and to place practical knowledge in the center of the teaching-learning process (Orff 1932, 1963). Attaining a higher level of development is fundamental and timeless, and creativity has a central role. Connectivity between multiple sources, aspects, and parameters (such as rhythm, melody, movement, and language) is a requirement. In an Orff classroom children sing, move, and play Orff instrumentarium. They improvise rhythms, melodies, and movements (Cunha and Carvalho 2012).

Based on the Experience Sampling Method (ESM), Custodero (2005) developed and applied FIMA (Flow Indicators in Musical Activity) and AFIMA (Adapted Flow Indicators in Musical Activity) in a music education context in order to verify and to analyze what Csikszentmihalyi (1990) described as optimal experiences/flow states.

Flow theory, based on optimal experiences, uses four essential components: control, attention, curiosity, and intrinsic interest (Csikszentmihalyi 1990). Flow states occur when someone is in self-control, is goal-related, and identifies with meaningful actions. According to Csikszentmihalyi (1990) there is a flow channel between “boredom” and “anxiety” states, produced by the equilibrium between increasing levels of “challenges” and “skills.” Flow
state moments are lived in the flow channel, and usually occur when a person’s body or mind is stretched to its limits in a voluntary effort to accomplish something difficult and worthwhile. Therefore, by balancing high levels of “skills” and “challenges” we are able to generate high output of ideas, productivity, satisfaction, and forward momentum.

Following previous research (Cunha and Carvalho 2012) and using FIMA and AFIMA (Custodero 2005), this paper aims to share results concerning the monitoring indicators “challenges” and “skills” as flow state elements, as presented in Figure 1 (Flow Theory Schematic Representation; Csikszentmihalyi 1990). The produced data adds relevant information to the authors’ preliminary studies where different examples of FIMA and affective indicators were observed in relation to emotions lived by the students in classes based on the Orff-Schulwerk approach (Cunha and Carvalho 2012).

METHOD

Participants

This study involved 50 students aged between 10 and 12 years old. The students were attending the fifth and sixth grades of a Portuguese public general school. The fifth grade students were in their first year of formal music education.

Materials

In order to observe flow states in the context of music education we have constructed a questionnaire with three different flow monitoring dimensions (affective indicator, challenges and skills indicator, and subjective indicator) based on ESM and, subsequently, on AFIMA (Custodero 2005). In order to better capture the qualities of the indicators, data were descriptively (affective and subjective indicator) and statistically (challenges and skills indicator) coded and analyzed.

Procedure

Guided by the teacher-as-researcher methodology, data were collected over twenty-five music education classes for a full academic year. Based on the Orff-Schulwerk approach, classes were divided into three pre-defined categories: (1) thirteen “general” classes, (2) six “music laboratory” classes, and (3) six “music and movement” classes (for short descriptions and examples see Cunha and Carvalho 2012). In the end of each class students individually answered the questionnaire in order to identify the experienced monitoring
flow indicators. In total, 637 questionnaires were answered and served as data that were then treated and analyzed using statistical analyses of monitoring indicators used by Custodero (2005). With respect to the current stage of the ongoing research, the following results (specifically, the challenge and skills indicator dimension of AFIMA) have been measured using a Likert scale of, 0-1=no (not at all), 2-4=somewhat, 5-7=quite, and 8-9=very.

RESULTS

The results presented in Table 1 concern all twenty-five classes (fifth and sixth grades). The “general,” “music laboratory,” and “music and movement” categories are represented in Figure 1 by the A, B, and C points, respectively. The D point represents the average of all categories and reveals the global challenges and skills indicator.

Figure 1. Challenges and skills indicator responses of Orff-Schulwerk students in “general,” “music laboratory,” and “music and movement” classes presented in relation to Csikszentmihalyi’s (1990) Flow Theory Schematic Representation. (See full color version at www.performancescience.org.)
Table 1. Means (and standard deviations) of challenges and skills indicator responses.

<table>
<thead>
<tr>
<th>Class category</th>
<th>n</th>
<th>Challenges</th>
<th>Skills</th>
</tr>
</thead>
<tbody>
<tr>
<td>General (A)</td>
<td>308</td>
<td>7.17</td>
<td>6.86</td>
</tr>
<tr>
<td>Music laboratory (B)</td>
<td>163</td>
<td>7.90</td>
<td>7.49</td>
</tr>
<tr>
<td>Music and movement (C)</td>
<td>166</td>
<td>7.98</td>
<td>7.73</td>
</tr>
<tr>
<td>Global (D)</td>
<td>637</td>
<td>7.68</td>
<td>7.36</td>
</tr>
</tbody>
</table>

DISCUSSION

Consistent with the results obtained in the pilot study to this project, and considering Csikszentmihalyi’s Flow Theory Schematic Representation (1990; see Figure 1), these results reveal the existence of a balance between challenges and skills as a crucial element to the occurrence of flow states. Accordingly, the present findings support the notion that flow is an optimal state determined by an individual perception of high skill and high challenge for a given task (Custodero 2005), reporting high values in response to challenges and skills indicators.

In conclusion, according to affective indicators previously presented (Cunha and Carvalho 2012), these results not only corroborate the occurrence of flow states, but also correlate them with high AFIMA levels, which implies that the Orff-Schulwerk approach may prove to be a flow-sustaining strategy in the context of music education. Therefore, while experiencing the activities of the Orff-Schulwerk approach students not only acquire musical knowledge (through singing, moving, dancing, and playing percussion instruments), but may also live out optimal experiences.

Acknowledgments

The authors would like to thank the University of Aveiro, Instituto de Etnomusicologia - Centro de Estudos em Música e Dança, and Fundação para a Ciência e Tecnologia, Portugal.

Address for correspondence

João C. R. Cunha, Sara Carvalho, INET-MD - Instituto de Etnomusicologia - Centro de Estudos em Música e Dança, University of Aveiro, Campus Universitário de Santiago, Aveiro 3810-193, Portugal; Email: jercunha@hotmail.com; scarvalho@ua.pt
References

